On the Linearity of Higher-Dimensional Blocking Sets
نویسنده
چکیده
A small minimal k-blocking set B in PG(n, q), q = pt, p prime, is a set of less than 3(qk + 1)/2 points in PG(n, q), such that every (n − k)-dimensional space contains at least one point of B and such that no proper subset of B satisfies this property. The linearity conjecture states that all small minimal k-blocking sets in PG(n, q) are linear over a subfield Fpe of Fq. Apart from a few cases, this conjecture is still open. In this paper, we show that to prove the linearity conjecture for kblocking sets in PG(n, pt), with exponent e and pe ≥ 7, it is sufficient to prove it for one value of n that is at least 2k. Furthermore, we show that the linearity of small minimal blocking sets in PG(2, q) implies the linearity of small minimal k-blocking sets in PG(n, pt), with exponent e, with pe ≥ t/e + 11.
منابع مشابه
On small blocking sets and their linearity
We prove that a small blocking set of PG(2, q) is “very close” to be a linear blocking set over some subfield GF(p) < GF(q). This implies that (i) a similar result holds in PG(n, q) for small blocking sets with respect to k-dimensional subspaces (0 ≤ k ≤ n) and (ii) most of the intervals in the interval-theorems of Szőnyi and Szőnyi-Weiner are empty.
متن کاملA small minimal blocking set in PG(n, pt), spanning a (t-1)-space, is linear
In this paper, we show that a small minimal blocking set with exponent e in PG(n, pt), p prime, spanning a (t/e − 1)-dimensional space, is an Fpe-linear set, provided that p > 5(t/e)− 11. As a corollary, we get that all small minimal blocking sets in PG(n, pt), p prime, p > 5t−11, spanning a (t−1)-dimensional space, are Fp-linear, hence confirming the linearity conjecture for blocking sets in t...
متن کاملDelamination of Two-Dimensional Functionally Graded Multilayered Non-Linear Elastic Beam - an Analytical Approach
Delamination fracture of a two-dimensional functionally graded multilayered four-point bending beam that exhibits non-linear behaviour of the material is analyzed. The fracture is studied analytically in terms of the strain energy release rate. The beam under consideration has an arbitrary number of layers. Each layer has individual thickness and material properties. A delamination crack is loc...
متن کاملA proof of the linearity conjecture for k-blocking sets in PG(n, p), p prime
In this paper, we show that a small minimal k-blocking set in PG(n, q), q = p, h ≥ 1, p prime, p ≥ 7, intersecting every (n−k)-space in 1 (mod q) points, is linear. As a corollary, this result shows that all small minimal k-blocking sets in PG(n, p), p prime, p ≥ 7, are Fp-linear, proving the linearity conjecture (see [7]) in the case PG(n, p), p prime, p ≥ 7.
متن کاملModeling and Analysis of Vehicles Flow on the Road
Abstract: This study is carried out to describe the behaviour of vehicles flow on the road, in the presence of blocking effects. A non-linear three dimensional system of ordinary differential equations is used to describe vehicles flow on the road. The study classify total vehicles population on the road into three compartments as Free – Slow – Released vehicles. The formulated model is well-po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 17 شماره
صفحات -
تاریخ انتشار 2010